$show=home

2007 Issue 357

  1. Let be given two bottles, the first bottle contains 1 liter of water, the second bottle is empty. One pours $\frac{1}{2}$ of the quantity of water contained in the first bottle into the second one, then one pours $\frac{1}{3}$ of the quantity of water contained in the second bottle into the first one, then one pours $\frac{1}{4}$ of the quantity of water contained in the first bottle into the second one, and so on, one pours $\frac{1}{5},$ then $\frac{1}{6},$ then $\frac{1}{7}, \ldots$ After the $2007^{\mathrm{th}}$ turn of such pouring, what are the quantities of water left in each bottle?
  2. Let $A B C$ be a right-angled triangle with right angle at $A$ and let $I$ be the point of intersection of its innner angled-bisectors. Take the orthogonal projection $E$ of $A$ on the line $B I$ then the orthogonal projection $F$ of $A$ on the line $C E .$ Prove that $2 E F^{2}=A I^{2}$
  3. Find all finite subset $A \subset \mathbb{N}^{*}$ such that there exists a finite subset $B \subset \mathbb N^{*}$ containning $A$ so that the sum of the numbers in $B$ is equal to the sum of the squares of the numbers in $A$.
  4. Prove that for every natural number $n \geq 2,$ we have $$1+\sqrt{1+\frac{4}{3 !}}+\sqrt[3]{1+\frac{9}{4 !}}+\ldots+\sqrt[n]{1+\frac{n^{2}}{(n+1) !}}<n+\frac{1}{2}$$ where $n !$ denotes $1.2 .3 \ldots n$
  5. Let $A B C D$ be a square inscribed in the circle $(O) .$ On the minor arc $\widehat{B C},$ take an arbitrary point $M$ distinct from $B, C .$ The lines $C M$ and $D B$ intersect at a point $E,$ the lines $D M$ and $A B$ intersect at a point $F$. Prove that the triangles $A B E$ and $D O F$ have equal areas.
  6. Prove that for every couple of positive integers $n, k$ the number $(\sqrt{n}-1)^{k}$ can be written in the form $\sqrt{a_{k}}-\sqrt{a_{k}-(n-1)^{k}}$ with $a_{k} \in \mathbb{N}^{*}$
  7. Prove that for every triangle $A B C$, we have $$\frac{3 \sqrt{3}}{2 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}}+8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \geq 5.$$ When does equality occur?
  8. Consider the sequence of numbers $\left(x_{n}\right)(n=0,1,2, \ldots)$ defined as follows $x_{0}$, $x_{1}$, $x_{2}$ are given positive numbers; $$x_{n+2}=\sqrt{x_{n+1}}+\sqrt{x_{n}}+\sqrt{x_{n-1}},\, \forall n \geq 1 .$$ Prove that the sequence $\left(x_{n}\right)(n=0,1,2, \ldots)$ has a finite limit and find its limit.
  9. Let be given a tetrahedron $A_{1} A_{2} A_{3} A_{4}$ Its inscribed sphere has center $I$, has radius $r$ and touches the faces opposite the vertices $A_{1}$, $A_{2}$, $A_{3}$, $A_{4}$ at $B_{1}$, $B_{2}$, $B_{3}$, $B_{4}$ respectively. Let $h_{1}$, $h_{2}$, $h_{3}$, $h_{4}$ be the measures of the altitudes of $A_{1} A_{2} A_{3} A_{4}$ issued from $A_{1}$, $A_{2}$, $A_{3}$, $A_{4}$ respectively. Prove that for every point $M$ in space, we have $$\frac{M B_{1}^{2}}{h_{1}}+\frac{M B_{2}^{2}}{h_{2}}+\frac{M B_{3}^{2}}{h_{3}}+\frac{M B_{4}^{2}}{h_{4}} \geq r.$$

$type=three$c=3$source=random$title=oot$p=1$h=1$m=hide$rm=hide

Anniversary_$type=three$c=12$title=oot$h=1$m=hide$rm=hide

Name

2006,1,2007,12,2008,12,2009,12,2010,12,2011,12,2012,12,2013,12,2014,12,2015,12,2016,12,2017,12,2018,11,2019,12,2020,12,2021,6,Anniversary,4,
ltr
item
Mathematics & Youth: 2007 Issue 357
2007 Issue 357
Mathematics & Youth
https://www.molympiad.org/2020/09/2007-issue-357.html
https://www.molympiad.org/
https://www.molympiad.org/
https://www.molympiad.org/2020/09/2007-issue-357.html
true
8958236740350800740
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS CONTENT IS PREMIUM Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy