$show=home

2009 Issue 386

  1. Find the last two decimal digits of the sum $2008^{2009}+2009^{2008}$
  2. Let $ABC$ be an isosceles right triangle with the right angle at $A$. Let $G$ be a point on $A B$ such that $A G=\dfrac{1}{3} A B$, let $M$ be the midpoint of $B C$ and $E$ be the foot of the altitude from $M$ to $CG$. The two lines $M G$ and $A C$ meet at $D$. Prove that $D E=B C$.
  3. Find all integer solutions of the equation $$4 x^{4}+2\left(x^{2}+y^{2}\right)^{2}+x y(x+y)^{2}=132$$
  4. Let $a$, $b$ and $c$ satisfy the conditions $a \leq b \leq c$ and $$a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}.$$ Find the least value of the expression $P=a b^{2} c^{3}$.
  5. A triangle $A B C$ inscribed in a circle centered at $O$, radius $R$, $A D$ is its anglebisector. Let $E$, $F$ be the circumeenters pf the triangles $A B D$ and $A C D$. respectively. Given that $B C=a$. Determine the area of the quadrilateral $A E O F$.
  6. Let $A B C$ be a triangle with incenter $I$ such that its centroid $G$ lies inside $(I)$. Let $a$, $b$, $c$ be the lengths of the sides $B C$, $A C$, $A B$, respectively. Find the greatest and least value of the following expression $$P=\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}$$
  7. Let $x$, $y$, $z$ be positive numbers satisfying $$x^{2}+y^{2}+z^{2}=\frac{1-16 x y z}{4}.$$ Find the least value of the expression $$S=\frac{x+y+z+4 x y z}{1+4 x y+4 y z+4 z x}.$$
  8. Solve for $x$ $$2^{x}+5^{x}=2-\frac{x}{3}+44 \log _{2}\left(2+\frac{131 x}{3}-5^{x}\right)$$
  9. Let $A B C$ be a right triangle, right angle at $A$, $M$ is the midpoint of $B C$. Construct a right angle $P M Q$ with $P \in A B$, $Q \in A C$. Prove that $$P Q^{2} \geq A P \cdot C Q+A Q \cdot B P$$
  10. Let $a_{n}$ be the last non-zero digit (counting from left to right) when expressing $n !$ in the decimal number system. Is the sequence $\left(a_{n}\right)$ for $n=1.2 .3 \ldots$ periodic? (That is, there exist the positive integers $T$ and $N$ such that $a_{i+T}=a_{i} \forall i \geq N$).
  11. Given $n$ non-negative numbers $a_{1}, a_{2}, \ldots, a_{n}$ $(n \geq 3)$ satisfying $$a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}=1.$$ Prove that $$\frac{1}{\sqrt{3}}\left(a_{1}+a_{2}+\ldots+a_{n}\right) \geq a_{1} a_{2}+a_{2} a_{3}+\ldots+a_{n} a_{1}.$$ When does equality occur?
  12. Let $\left(x_{n}\right)(n=1,2, \ldots)$ be a sequence given by $$x_{1}=a \ (a>1),\, x_{2}=1,\quad x_{n+2}=x_{n}-\ln x_{n},\,\forall n \in \mathbb{N}^{*}.$$ Put $\displaystyle S_{n}=\sum_{k=5}^{n-1}(n-k) \ln \sqrt{x_{2 k-1}}$ $(n \geq 2)$. Find $\displaystyle\lim_{n \rightarrow \infty}\left(\frac{S_{n}}{n}\right)$.

$type=three$c=3$source=random$title=oot$p=1$h=1$m=hide$rm=hide

Anniversary_$type=three$c=12$title=oot$h=1$m=hide$rm=hide

Name

2006,1,2007,12,2008,12,2009,12,2010,12,2011,12,2012,12,2013,12,2014,12,2015,12,2016,12,2017,12,2018,11,2019,12,2020,12,2021,4,Anniversary,4,
ltr
item
Mathematics & Youth: 2009 Issue 386
2009 Issue 386
Mathematics & Youth
https://www.molympiad.org/2020/09/2009-issue-386.html
https://www.molympiad.org/
https://www.molympiad.org/
https://www.molympiad.org/2020/09/2009-issue-386.html
true
8958236740350800740
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS CONTENT IS PREMIUM Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy