$show=home

2010 Issue 394

  1. Find all pair of natural numbers $x, y$ such that $$\left(2^{x}+1\right)\left(2^{x}+2\right)\left(2^{x}+3\right)\left(2^{x}+4\right)-5^{y}=11879$$
  2. Let $n$ be a positive integer and let $U(n)=\left\{d_{1} ; d_{2} ; \ldots ; d_{m}\right\}$ be the set of all positive divisors of $n$. Prove that $$d_{1}^{2}+d_{2}^{2}+\ldots+d_{m}^{2} \leq n^{2} \sqrt{n}$$
  3. Prove that $$\frac{1}{a^{4}(a+b)}+\frac{1}{b^{4}(b+c)}+\frac{1}{c^{4}(c+a)} \geq \frac{3}{2}$$ where $a$, $b$, $c$ are three positive numbers satisfying $a b c=1$.
  4. Solve the equation $$3 \sqrt{x^{3}+8}=2 x^{2}-6 x+4$$
  5. Let $A B C D$ be a square, $M$ is a point lying on $C D$ ($M \neq C$, $M \neq D$).  Through the point $C$ draw a line perpendicular to $A M$ at $H$ $B H$ meets $A C$ at $K$. Prove that a) $M K$ is always parallel to a fixed line when $M$ moves on the side $C D$.
    b) The circumcenter of the quadrilateral $ADMK$ lies on a fixed line.
  6. Let $a, b, c$ be positive real numbers such that $a b c=1$. Prove that $$\frac{1}{\sqrt{a^{3}+2 b^{3}+6}}+\frac{1}{\sqrt{b^{3}+2 c^{3}+6}}+\frac{1}{\sqrt{c^{3}+2 a^{3}+6}} \leq 1$$
  7. Consider all triangles $A B C$ where $A<B<C \leq \frac{\pi}{2}$. Find the least value of the expression $$M=\cot ^{2} A+\cot ^{2} B+\cot ^{2} C +2(\cot A-\cot B)(\cot B-\cot C)(\cot C-\cot A)$$
  8. Let $A B C$ be a triangle with $B C=a$, $A C=b$, $A B=c$. A line $d$ passing through its incenter meets $A B$, $A C$, $B C$ respectively at $M$, $N$, $P$. Prove that $$\frac{a}{\overline{B P} \cdot \overline{P C}}+\frac{b}{C N \cdot N A}+\frac{c}{\overline{A M} \cdot \overline{M B}}=\frac{(a+b+c)^{2}}{a b c}$$
  9. Let $x, y, z$ be non-zero real numbers such that $x+2 y+3 z=5$ and $2 x y+6 y z+3 x z=8$. Prove that $$1 \leq x \leq \frac{7}{3} ; \frac{1}{2} \leq y \leq \frac{7}{6} ; \frac{1}{3} \leq z \leq \frac{7}{9}$$
  10. Solve the system of equations $$\begin{cases} \sqrt[3]{x}+\sqrt[3]{y} &=\sqrt[3]{3(x+y)} \\ 4 x^{3}+6 x^{2}+4 x+1 &=15 y^{4}\end{cases}$$
  11. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $$f(f(x)+y)=f(x+y)+x f(y)-x y-x+1$$
  12. Suppose that the tetrahedron $A B C D$ satisfies the following conditions: All faces are acute triangles and $B C$ is perpendicular to $AD$. Let $h_{a}$, $h_{d}$ be respectively the lengths of the altitudes from $A$, $D$ onto the opposite faces, and let $2 \alpha\left(0^{\circ}<\alpha<45^{\circ}\right)$ be the measure of the dihedral angle at edge $B C$, $d$ is the distance between $B C$ and $A D$. Prove the inequality $$\frac{1}{h_{a}}+\frac{1}{h_{d}} \leq \frac{1}{d \cdot \sin \alpha}$$

$type=three$c=3$source=random$title=oot$p=1$h=1$m=hide$rm=hide

Anniversary_$type=three$c=12$title=oot$h=1$m=hide$rm=hide

Name

2006,1,2007,12,2008,12,2009,12,2010,12,2011,12,2012,12,2013,12,2014,12,2015,12,2016,12,2017,12,2018,11,2019,12,2020,12,2021,6,Anniversary,4,
ltr
item
Mathematics & Youth: 2010 Issue 394
2010 Issue 394
Mathematics & Youth
https://www.molympiad.org/2020/09/2010-issue-394.html
https://www.molympiad.org/
https://www.molympiad.org/
https://www.molympiad.org/2020/09/2010-issue-394.html
true
8958236740350800740
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS CONTENT IS PREMIUM Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy