$show=home

2012 Issue 423

  1. Find all numbers abcde, where all five digits are distinct and $\overline{a b c d}=(5 e+1)^{2}$
  2. Find all positive integers $x, y, z$ such that $x+3=2^{y}$ và $3 x+1=4^{z}$
  3. Find the last digit of the sum $$S=1^{2}+2^{2}+3^{3}+\ldots+n^{n}+\ldots+2012^{2012}.$$
  4. Given a function $f$ such that $$f\left(1+\frac{\sqrt{2}}{x}\right)=\frac{(1+2011) x^{2}+2 \sqrt{2 x}+2}{x^{2}}$$ for all nonzero $x$. Determine $f(\sqrt{2012-\sqrt{2011}})$
  5. Let $A B C$ be a triangle inscribed in the circle $(O)$. The tangents of $(O)$ at $B$ and $C$ meet at $T$. The line passing through $T$ and parallel to $B C$ cuts $A B$ and $A C$ respectively at $B_{1}$ and $C_{1}$ Prove that $\widehat{B_{1} O C_{1}}$ is an acute angle.
  6. On the outside of triangle $A B C$, construct equilateral triangles $A B C_{1}$, $B C A_{1}$, $CAB_{1}$ and inside of $A B C$ construct equilateral triangles $A B C_{2}$, $B C A_{2}$, $C A B_{2}$. Let $G_{1}$, $G_{2}$, $G_{3}$ be respectively the centroids of $A B C_{1}$, $B C A_{1}$, $C A B_{1}$ and let $G_{4}$, $G_{5}$, $G_{6}$ be respectively the centroids of triangles $A B C_{2}$, $BCA_{2}$ and $CAB_{2}$. Prove that the centroids of triangle $G_{1} G_{2} G_{3}$ and of triangle $G_{4} G_{5} G_{6}$ coincide.
  7. Solve the equation $$3^{3 x}+3^{x}=\log _{3}\left(2^{x}+x\right)+2^{x}+3^{2^{x}+x}.$$
  8. Let $A$, $B$, $C$ be the three angles of an acute triangle. Prove the inequality $$\sqrt{\frac{\cos A \cos B}{\cos C}}+\sqrt{\frac{\cos B \cos C}{\cos A}}+\sqrt{\frac{\cos C \cos A}{\cos B}}>2.$$
  9. Find the largest positive integer $n$ $(n \geq 3)$ such that there exists a sequence of positive integers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying the condition $$a_{k+1}+1=\frac{a_{k}^{2}+1}{a_{k-1}+1},\, k \in\{2,3, \ldots, n-1\}.$$
  10. Let $p$ be an odd prime number, $n$ is a positive integer so that $p-1$, $p$, $n$ and $n+1$ are pairwise coprime. Find all positive integers $x$, $y$ satisfying $$x^{p-1}+x^{p-2}+\ldots+x+2=y^{n+1}.$$
  11. Solve the system of equations $$\begin{cases}\sqrt{5 x^{2}+2 x y+2 y^{2}}+\sqrt{2 x^{2}+2 x y+5 y^{2}} &=3(x+y) \\ \sqrt{2 x+y+1}+2 \sqrt[3]{7 x+12 y+8} &=2 x y+y+5\end{cases}.$$
  12. Let $A B C$ be a triangle inscribed in the circle $(O)$ and let $I$ be its incenter. $A I$, $B I$, $Cl$ cut the circle $(O)$ at $A^{\prime}$, $B^{\prime}$ and $C^{\prime}$ respectively; $A^{\prime} C^{\prime}$, $A^{\prime} B^{\prime}$ cut $B C$ at $M$, $N$; $B^{\prime} A^{\prime}$; $B^{\prime} C^{\prime}$ cut $C A$ at $P$, $Q$; $C^{\prime} B^{\prime}$, $C^{\prime} A$ cut $A B$ at $R$, $S$. Prove that $$\frac{2}{3} S_{A B C} \leq S_{M N P Q R S} \leq \frac{2}{3} S_{A^{\prime} B^{\prime} C^{\prime}}.$$

$type=three$c=3$source=random$title=oot$p=1$h=1$m=hide$rm=hide

Anniversary_$type=three$c=12$title=oot$h=1$m=hide$rm=hide

Name

2006,1,2007,12,2008,12,2009,12,2010,12,2011,12,2012,12,2013,12,2014,12,2015,12,2016,12,2017,12,2018,11,2019,12,2020,12,2021,6,Anniversary,4,
ltr
item
Mathematics & Youth: 2012 Issue 423
2012 Issue 423
Mathematics & Youth
https://www.molympiad.org/2020/09/2012-issue-423.html
https://www.molympiad.org/
https://www.molympiad.org/
https://www.molympiad.org/2020/09/2012-issue-423.html
true
8958236740350800740
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS CONTENT IS PREMIUM Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy